direct product, p-group, elementary abelian, monomial
Aliases: C33, SmallGroup(27,5)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C33 |
C1 — C33 |
C1 — C33 |
Generators and relations for C33
G = < a,b,c | a3=b3=c3=1, ab=ba, ac=ca, bc=cb >
Character table of C33
class | 1 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3O | 3P | 3Q | 3R | 3S | 3T | 3U | 3V | 3W | 3X | 3Y | 3Z | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | linear of order 3 |
ρ3 | 1 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | linear of order 3 |
ρ4 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | linear of order 3 |
ρ5 | 1 | ζ3 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | 1 | linear of order 3 |
ρ6 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | linear of order 3 |
ρ8 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | linear of order 3 |
ρ9 | 1 | ζ32 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | 1 | linear of order 3 |
ρ10 | 1 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ3 | linear of order 3 |
ρ11 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ12 | 1 | 1 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ13 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ14 | 1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ15 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ3 | linear of order 3 |
ρ16 | 1 | 1 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ17 | 1 | ζ32 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ3 | linear of order 3 |
ρ18 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | linear of order 3 |
ρ19 | 1 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ32 | linear of order 3 |
ρ20 | 1 | 1 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ21 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | linear of order 3 |
ρ22 | 1 | 1 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ23 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | linear of order 3 |
ρ24 | 1 | ζ3 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ32 | linear of order 3 |
ρ25 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | linear of order 3 |
ρ26 | 1 | ζ3 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ32 | linear of order 3 |
ρ27 | 1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 6 14)(2 4 15)(3 5 13)(7 24 16)(8 22 17)(9 23 18)(10 27 19)(11 25 20)(12 26 21)
(1 26 8)(2 27 9)(3 25 7)(4 19 23)(5 20 24)(6 21 22)(10 18 15)(11 16 13)(12 17 14)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,6,14)(2,4,15)(3,5,13)(7,24,16)(8,22,17)(9,23,18)(10,27,19)(11,25,20)(12,26,21), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,6,14)(2,4,15)(3,5,13)(7,24,16)(8,22,17)(9,23,18)(10,27,19)(11,25,20)(12,26,21), (1,26,8)(2,27,9)(3,25,7)(4,19,23)(5,20,24)(6,21,22)(10,18,15)(11,16,13)(12,17,14) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,6,14),(2,4,15),(3,5,13),(7,24,16),(8,22,17),(9,23,18),(10,27,19),(11,25,20),(12,26,21)], [(1,26,8),(2,27,9),(3,25,7),(4,19,23),(5,20,24),(6,21,22),(10,18,15),(11,16,13),(12,17,14)]])
G:=TransitiveGroup(27,4);
C33 is a maximal subgroup of
C33⋊C2 C32⋊C9 C3≀C3 C33⋊C13
C33 is a maximal quotient of C9○He3
Matrix representation of C33 ►in GL3(𝔽7) generated by
4 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 2 |
1 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 4 |
2 | 0 | 0 |
0 | 4 | 0 |
0 | 0 | 1 |
G:=sub<GL(3,GF(7))| [4,0,0,0,1,0,0,0,2],[1,0,0,0,4,0,0,0,4],[2,0,0,0,4,0,0,0,1] >;
C33 in GAP, Magma, Sage, TeX
C_3^3
% in TeX
G:=Group("C3^3");
// GroupNames label
G:=SmallGroup(27,5);
// by ID
G=gap.SmallGroup(27,5);
# by ID
G:=PCGroup([3,-3,3,3]);
// Polycyclic
G:=Group<a,b,c|a^3=b^3=c^3=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export
Subgroup lattice of C33 in TeX
Character table of C33 in TeX